
Kernel for a Responsive and Graphical User I n t e r f a c e PE-Tl-1009

DATE: June 24, 1982

TO: R & D Personnel

FROM: Hugo Strubbe

SUBJECT: Kernel for a Responsive and Graphical User Interface

REFERENCE: PE-TI-917; PE-TI-973

KEYWORDS: User Interface, User Friendliness, Interactivity, Display
Tree Programmer Productivity

ABSTRACT

A kernel has been constructed which allows application programmers to
build graphical and responsive user interfaces for their programs with
minimal effort.

The graphical aspect comes from the use of a display tree, which is a
structured representation of a 2 - dimensional screen image and which
can be mapped onto any viewport.

The responsive aspect is obtained by attaching procedures to the leaves
of this tree. They are invoked whenever the leaf is touched or
modified.

The use of a library with standard attached procedures (e.g. for
screen - editing and error checking) leads to a system that behaves
uniformly across applications.

Some demonstration programs, based on this kernel, show the very
dynamic screen communication that can be achieved.

PRIME RD&E RESTRICTED

Kernel for a Responsive and Graphical User Interface PE-TI-1009

1 Introduction

The discussion of user interfaces is a very popular topic nowadays.
However, a large number of papers contain merely a wishlist of
features. They leave it to each individual application programmer to
incorporate them in their programs. Far fewer articles give actual
guidelines on how to implement user friendliness (e.g. 1,2,3,5). This
project aims at relieving the application programmers of such burden by
designing a kernel which contains all the functions needed to give
programs a very friendly user interface.

Some years ago, a program was considered fully interactive if it
prompted the user at the terminal (e.g. "GIVE NAME OF INPUT FILE"),
and the user could then type in an answer (e.g. "MYFILE_DATA") . The
kernel to support such interface is very simple, i.e. WRITE LINE TO
TERMINAL and READ LINE FROM TERMINAL. Typically, each application
program would contain code to check the validity of the user responses.
However, it rarely contained code to allow the user to correct
erroneous input. If, for instance, the file MYFILE_DATA does not
exist, the program normally will report this as an error and might
prompt for another input name. The user can then try with a new name
(e.g. MYFILE.DATA), rather than having the possibility to edit the
previous one.

There exist by now a few programs that have a much more advanced
approach to interactivity and user interface (e.g. VisiCalc). Their
main features are full screen usage, immediate feedback and self
explanatory commands. As an example of the last two features, think of
a program which completes a keyword as soon as the first letter is
typed or where scrolling is initiated by an attempt to move the cursor
off screen in the desired direction. Slowly, such programs will be
setting a standard for the degree of minimum user friendliness a user
expects of all application programs. Unfortunately, friendly programs
are much harder to write as they require more code (e.g. for screen
management and error correction). Moreover, each of these programs
typically achieves the above features with its own code in its own way.
This is a duplication of effort and leads to confusion for the user who
sees all these different interfaces.

The friendly environments which we will see appear in the near future
presumably will all look very different from each other. Nevertheless,
we believe there to be a limited set of features on which most of them
will be based and which can be implemented reasonably well on systems
of today. We will discuss them in more depth in section 2. They are
as follows:

1) A screen - oriented and graphical representation can make the
human interface very intuitive and suggestive.

2) Feedback can be given after each character entered, so as to catch
errors early. They are easily correctable if everything on the
screen is editable.

PRIME RD&E RESTRICTED Pase 2

Kernel for a Responsive and Graphical User Interface PE-TI-1009

3) The use of menus eliminates the misspelling of keywords and the
selection of incompatible options.

4) Multiple windows on the screen allow the user to follow his
thoughts in a natural way.

5) The coherence of the view by the user is enhanced if a change of
- data propagates: "What you see is what you get".

We then undertook the task of creating a "User Interface Kernel", which
contains the primitives to obtain the above - mentioned basic features
with very little effort on the part of tha application writer. In
fact, all he has to do is to formulate his problem in terms of
displayed objects and procedures attached to them; select routines
from the kernel library for universal tasks, like editing and error
checking; and write the procedures specific for his application.
These application procedures are much simpler than without the kernel,
as they are only invoked with valid input data and as they deal with
the screen in a high - level way.

In section 2 we will describe, along with each basic feature, its
implementation in the kernel. A full example of how it all works
together will be described in section 3. In section H we will give
more technical details. Section 5 will discuss our approach for a
variety of applications.

2 Responsive and Graphical User Interface

2.1 Screen - Oriented and Graphical Presentation

Consider, as an example, a program that needs to obtain from the
user several input parameters. One style of user interface would
start a question/answer dialogue with the user, as described in the
introduction. We call this style line - orientei interaction.
Another style would paint a "form" on the screen, with designated
areas where the user has to supply data. We call this screen -
oriented interaction.

The latter interface is clearly more flexible: the user can check
from the beginning whether he has all required data available; he
can fill out the form in any convenient order; etc. It requires
the ability to move the cursor to any place on the screen and a
mechanism to keep track of the position of everything that is
displayed.

Once the application programmer has given proper thought to the .̂̂
advantages of screen-oriented interaction, it is natural for him to ^ ^
come up with a graphical representation of the output data. By
this, we do not mean so much the use of plots or coordinate systems,

PRIME RD&E RESTRICTED Page 3

Kernel for a Responsive and Graphical User Interface PE-TI-1009

but rather the display of data similar to the way a teacher would do
on a blackboard. One can draw boxes around quantities that go
together, connect things with arrows to show the flow of control,
etc.

Another natural extension of the concept of a "form" is to take away
the distinction between output phase (the program prints the initial
prompts) and input phase (the user fills in the data). Instead, we
allow a program to write onto the screen at any time. A user can
also modify data displayed by a program. As an example, think of a
file copy program which wants to continuously indicate its state to
the user. Therefore, it displays besides the copy command: "10
percent copied", then it overwrites this "10" by a "20", a "30",
etc.. In another example, a user would type a number which leads to
a numerical result. Then the user changes that result and sees a
corresponding change in the input value.

The advantage of overwriting information, instead of adding it on to
the bottom of the screen, is of course that the "form" that
initiated the program does not scroll off the screen during
execution. Therefore, the input parameters remain visible and it is
easy to restart the program with slightly different parameters
afterwards.

Except somewhat during the initial screen layout, we nearer require
the application programmer to know about screen coordinates.
Instead, he deals with a structure, called the display tree, to do
his screen i/o. The content of the tree is automatically displayed
on the screen by our "display process". Conversely, any change to
the screen image is reflected in the content of the tree.

2.2 Correction and Detection of Input Errors

In the case of a screen - oriented approach, it is natural to
provide screen editor capabilities to the user at all times. By
incorporating them in our kernel, the user is able to modify or to
move around any data on the screen with the same commands for all
his application programs.

Such global editing has a second advantage: it provides an easy
(albeit crude) way to make programs communicate. Even if two
programs were never designed to accept each other's data, a "cut and
paste" method can be used to prepare screen input for the first one,
based on screen output of the second program. This gives the user a
limited taste of an integrated environment.

As pointed out in the introduction, application programs nowadays
often contain code to check the validity of their input data. In
order to give the user the feeling that he understands his system,
we want to insure that he always gets the same error messages for
the same errors. We therefore incorporate in our kernel a library
of checking routines for the common data types (e.g. integer within

»*PRIME RD&E RESTRICTED** Page '4

Kernel for a Responsive and Graphical User Interface PE-TI-1009

a range, name of an existing file, etc.). As many application
programs will rely on these routines, it is well worthwhile to make
them very thorough and friendly.

In general, there are two checking tasks. The first one gets
invoked for each character that the user types (e.g. to make sure
that no letters end up in an integer). This is the key to a
responsive user interface. Note that the messages produced by this
checker should be considered as quick warnings. The second checking
task is invoked when a field in the "form" is completed (e.g. to
see if the integer is within a requested range).

The main advantage for an application writer who uses our kernel is
that his program gets as input completely edited and validated data.

2.3 Use of Menus, Icons and Illustrations

It is often easier for the user to converse with a program by
answering multiple - choice questions than to type in commands.
Such a list of answers is called a menu. When the answers are
represented by little drawings, we talk about icons. Logically,
they are equivalent. In addition, there are texts and drawings that
serve only as illustrations. It does not make sense to edit them,
but they can be copied.

The advantages of menus are that the user does not have to remember
the list of existing commands, that misspelling of commands cannot
occur and that illegal commands cannot be entered (assuming only
legal commands are displayed at any time).

A menu item is activated by pointing at it with the cursor. In our
approach, the application programmer "attaches" a procedure to each
menu item he paints on the screen. The kernel contains an input
analyser which compares the cursor coordinates with the positions of
all menu items on the screen. These positions are recorded in the
display tree. If there is a hit, the kernel activates the attached
procedure.

2.4 Multiple Windows

Many Operating Systems are set up such that a user can connect only
one interactive task at a time to his terminal. If his thinking
process requires him to perform a second task before the first one
is finished, he is in trouble.

A standard solution is to map multiple virtual terminals (each one
with its own context) onto one physical terminal. The parts of the
virtual screens which are actually visible on the physical screen
are called windows or viewports.

PRIME RD&E RESTRICTED Page

Kernel for a Responsive and Graphical User Interface PE-TI-1009

In our approach, the application programmer thinks solely in terms
of virtual terminals. Instead of writing directly onto the physical
screen, he writes into data structures, called display trees. Each
display tree represents one virtual screen.

From here on the kernel takes over. The user interacts with a
"viewport manager" to position the viewports where he wants. Their
positions are remembered in a geometry table. A "display process"
paints into each viewport the contents of the corresponding display
tree.

The application programmer never knows the location of his viewports
or the absolute position of the cursor. However,'he is allowed to
obtain the position of the cursor, relative to his virtual screen.
The kernel uses the geometry table to do this conversion.

2.5 Propagation of Change

Many programs are involved in maintaining a database of some sort.
Often different programs have to be invoked to list the database,
change it, delete and create items in it. This is very confusing to
the user and should be avoided.

Take as an example a file maintenance package, and a user who wants
to rename a particular file. Typically, he first has to use the
"file lister" to find the old name of the file. Then he invokes the
"name changer" to which he has to feed the old name (careful of
misspellings!) and the new name. At this point, the file listing
(if still on the screen) is inconsistent with the database, as it
contains the old file name. To get an up-to-date listing, the user
has to invoke the "file lister" a second time.

We consider the following scenario as a much more natural
alternative: after listing the filenames, the user positions the
cursor at the old name and edits it in place to become the new name.
When he terminates his editing, the file is automatically renamed.

Some more examples of this style of interaction can be found in
Fraser (4), who has a different approach to their implementation.

the key to our mode of operation is to foresee a feedback mechanism
that brings the application program into action when its screen
image has been modified. We use here the same mechanism which we
outlined for the menu picks: we attach a procedure to each object
that is to be manipulated.

PRIME RD&E RESTRICTED Page

Kernel for a Responsive and Graphical User Interface PE-TI-1009

3 How the Kernel Works

A simplified view of the kernel will now be presented, using the above
mentioned file maintenance package as an example.

First of all, the application programmer has to build a structure which
represents the file system (e.g. a table of filenames and their
addresses on disk). This is called the application structure, and each
entry in it is identified by an application structure pointer.

Then he has to design and lay out on paper one (or several) screen
image(s): he writes a title; he draws 5 boxes in which the names of
the first 5 files will appear; he positions near them icons for
scrolling through all the names; he draws an icon to terminate the
program; and he allocates an area for errormessages. (see fig. 1).

Each screen image is then used to build a display tree in computer
memory: each object of the screen image becomes a leaf in the display
tree. A leaf contains the relative coordinates to position it on the
screen, its size, and a content (e.g. the picture of an icon or the
character representation of a filename). In order to speed up' the
input analyser, each node contains the cumulative size of its leaves.

Such display tree contains sufficient data to have the display process
paint the screen image into a viewport. In other words, the
application program can now "talk" to the user. However, additional
data are necessary in our display tree to allow the user to answer
back. Therefore, the application programmer can give to each leaf a
list of attached procedures and an application structure pointer.

When a leaf is touched by the cursor, the input analyser invokes the
attached procedures with the application structure pointer as argument.
This pointer is a means to identify the touched leaf. Each application
program has to be viewed as a collection of attached procedures.

For a filename leaf the application structure pointer would be made to
point to the corresponding entry in the file table. Then we would
attach the following procedures:

1) an edit routine to construct the new filename. This routine gives
the full screen - editing capabilities to the user for modifying
the old name. In addition, it shades in gray those fields of
which the modification has not yet been transmitted to the
application program.

2) a checking routine to see if the name is syntactically legal.
After each incoming character this routine checks for illegal
characters inside the name. In particular, the first character of
our filenames has to be a letter. This is the warning issued in
fig. 1.

3) a checking routine to detect duplicate names. This routine is

PRIME RDiE RESTRICTED Page 7

Kernel for a Responsive and Graphical User Interface PE-TI-1009

only invoked when the user terminates the editing of a field
(signalled by pressing the DO-IT key).

4) the renaming procedure. Only in the case that all checking
routines are successful is this routine called.

For a scroll icon leaf, we would use an icon highlight routine and the
scroll routine. By omitting an edit routine, we made it impossible to
edit this icon. Similarly, we attach a termination routine to the STOP
icon. The title, boxes and error messages get a standard illustration
routine attached to them.

The application programmer has to write the rename, scroll and
termination routine which modify the file system and/or the display
tree. Typically, the application structure pointer is used to find the
old value of the leaf, while the new value can be read from the leaf.

In a well-developed system, the application programmer will not have to
be concerned with writing highlight, edit or check routines: he can
merely select them from a library. Doing so will make him more
productive and will make the system look uniform to the users.

4 Technical Details

Our display package, which has been named MINICORN, is written in
PASCAL and runs under the PRIMOS operating system. It consists of the
following parts:

1) The viewport manager, the display process and the cursor mover.
They require 1500 lines of very terminal - dependent code. We
currently support a BEEHIVE DM30 and an HDS CONCEPT 108. The
latter has hardware support for viewports. Both are character -
oriented terminals. Our screen image is therefore not yet fully
graphical. However, a bitmap system is planned for the near
future. We do not possess a graphic input device (like a mouse or
joystick) to move the cursor. Therefore we use cursor control
keys. This is felt to be a limitation. Viewport layout is static
and done by the user at system startup time. We do not (yet) have
viewports that pop up or disappear dynamically. The current
display process runs asynchronously from the display tree updates
at a low priority. Full responsiveness will require part of it to
become synchronous.

2) The input analyser (100 lines). It accepts data from the keyboard
and the network. It is also responsible for invoking the display
process when there is no input waiting.

3) The display tree manipulation library (1000 lines). The
application programmer deals with the display tree as an
encapsulated data type. This library therefore contains the
primitives to create, connect or delete leaves or nodes of a tree;
to insert, retrieve or delete characters in a textleaf; to

PRIME RP*cE RESTRICTED Page 3

Kernel for a Responsive and Graphical User Interface PE-TI-1009

highlight (part of) a leaf; to attach procedures and pointers to
leaves.

4) The read-write-check library (600 lines). It contains: a set of
print routines, with which the application programmer can write
text or numbers into the display tree; routines that read and
check the syntax of a filename or a number; routines that check
the range of numbers.

5) The echo and edit attached procedures (300 lines), which give
(Emacs like) screen - editor behaviour to a leaf.

5) The application programs and their attached procedures (2000
lines). Their functionality will be discussed in the next
section. Currently, all application programs run in the same
address space. As they might be invoked simultaneously in several
viewports, they all have to be reentrant, with separate data areas
per viewport.

5 Discussion and Further Work

The success of our approach can be measured by the ease with which one
can write responsive programs in this environment. We wrote 3
application programs:

1) The file manipulation program (400 lines), described in paragraph
3-

2) A calculator program (400 lines), inspired by VisiCalc, which
evaluates

a OP b = c

where a, b, c are integers in the range from -1000 to 1000 and OP
is the f, -, * or / operator. If a, b or OP changes, then c is
immediately recalculated; if c changes then both a and b are
adjusted. The user changes a, b or c by applying editor commands
to them. OP is modified by scrolling through the list of legal
operators. See fig. 2.

3) A communication program (700 lines) that sends command lines to
the line - oriented PRIMOS operating system and displays its
answers on the screen. The command lines are of course prepared
with the help of our screen - editing facilities. They can reside
anywhere on the screen. The answers are automatically backed up
on disk, so they can be perused easily (by activating the scroll
icons). As this program can be invoked in several viewports ^.
simultaneously, the user of MINIC0RN now has multiprocessing at J
his disposition. Note that these processes can reside on remote
machines. This is the reason our input analyser (see paragraph 4)

PRTME RD&E RESTRICTED Page 9

Kernel for a Responsive and Graphical User Interface PE-TI-1009

has to expect input to arrive over the network.

Let us now investigate what programming is like in our environment and
compare it with the traditional way.

The major difference between the two methods is a conceptual one:
every application program has to be viewed as a collection of attached
procedures. We did not find this particularly difficult.

The second difference lies in the fact that the output to the screen is
not in scroll mode any more: rather than always writing into the last
line of the screen, we now have to explicitly indicate into which leaf
of the display tree we want to write. This is accomplished by giving
all our print routines an additional argument, namely the pointer to
the leaf. This is much easier than dealing directly with the screen
coordinates of the objects.

There is some work involved in converting the (paper) screen layout
into a series of subroutine calls that constructs the corresponding
display tree. However, this procedure is completely straightforward
and a graphical tool could be built to automate the job.

Finally, by writing more application programs we expect to find pattern
of common interaction sequences, for which higher level primitives can
then be written. For instance, the user task of choosing one keyword
out of a list might well be a generally needed operation. A primitive
could be defined which paints the first keyword, surrounds it with
scroll symbols, and scrolls cyclicly through the list when activated.
This would simplify the work of the application programmer even more.

It would be exciting to write more programs in this environment (e.g.
an editor, which formats the source file according to its content), or
to refine the display tree manipulation library (e.g. by including
more graphics in it). However, we see more urgent problems which we
will try to solve first:

1) Extend the kernel with primitives, so that the application
programmer can easily incorporate HELP facilities in his programs.

2) Foresee a mechanism of backup, so that the user can redisplay in
some way what he did during an interactive session.

3) Extend the notion of "propagation of change" to the case where the
same program looks at the same data base in two viewports. A
change in one viewport should lead to a change in the other one as
well.

PRIME RD&E RESTRICTED Page 10

Kernel for a Responsive and Graphical User Interface PE-TI-1009

6 References

1) Bass,L.J. and Bunker,R.E.: A Generalized User Interface for
Application Programs. Comm.ACM 24,12, (Dec. 1981), 796-800.

2) Demers,R.A.: System Design for Usability. Comm.ACM 24,9, (August
1931), 494-501.

3) Dwyer,B.: A User - Friendly Algorithm. Comm.ACM 24,9, (Sept.
1981), 556-561.

4) Fraser,C.W.: A Generalized Text Editor. Comm.ACM 23,3, (March
1980), 154-158.

5) Proceedings of conf. "Human Factors in Computer Systems", March
1982, Gaithersburg, Maryland. See papers by Ball,E. and Hayes,P. (p
85); by Roach,J. et al. (p 102); by Feldman,M. and Rogers,G. (p
111) .

~)

PRIME RD&E RESTRICTED Page 11

Kernel for a Responsive and Graphical User Interface PE-TI-1039

FILE MANIPULATION

PROGRAM

FILE4

MYFILE

ANOTHERFILE

AFILE

YOU SHOULD MAKE THE FIRST CHARACTER OF
YOUR NEW FILENAME A LETTER.

Fig 1.

SCREEN LAYOUT FOR THE FILE MANIPULATION
PROGRAM. (THE _ INDICATES THE CURSOR),

PRIME RD̂ cE RESTRICTED

Kernel for a Responsive and Graphical User I n t e r f a c e PE-TT-1009

Calculator

Program

50 -+" 20 = 70

message area

fig, 2,

Screen layout for the Calculator
Program. (The indicates
the cursor)•

PRIME RD&E RESTRICTED

^ \

	Cover Page
	1
	Introduction
	2
	Responsive and Graphical User Interface
	3
	4
	5
	6
	How the Kernel Works
	7
	Technical Details
	8
	Discussion and Further Work
	9
	10
	References
	11
	Screen Layouts
	12
	13

